Search results

1 – 1 of 1
Article
Publication date: 29 January 2020

Jian-Ping Wang, Mei-Ru Wang, Jian-Lan Zhou, Qing-Jun Zuo and Xun-Xian Shi

The purpose of this study is to develop optimal evacuation plan to provide valuable theoretical and practical insight in the fire evacuation work of similar structures, by…

Abstract

Purpose

The purpose of this study is to develop optimal evacuation plan to provide valuable theoretical and practical insight in the fire evacuation work of similar structures, by proposing a systematic simulation-based guided-evacuation agent-based model (GAM) and a three-stage mathematical evacuation model to investigate how to simulate, assess and improve the performance efficiency of the evacuation plan.

Design/methodology/approach

The authors first present the self-evacuation and guided-evacuation models to determine the optimal evacuation plan in ship chamber. Three key performance indicators are put forward to quantitatively assess the evacuation performance within the two fire scenarios. The evacuation model in tower is built to obtain the dividing points of the three different fire evacuation plans.

Findings

The study shows that the optimal evacuation plan determined by the GAM considering social relationships effectively relieves the congestion or collision of evacuees and improves the evacuation uniformity. The optimal evacuation plan not only solves the crush caused by congestion or collision of evacuees but also can greatly shorten the evacuation time for passenger ship fire.

Originality/value

This study establishes the GAM considering the interactive evacuee characteristics and the proportion of evacuees guided by the crew members to make the optimal evacuation plan more time-efficient. The self-evacuation process is simulated to assess the performance of the guided-evacuation strategies, which are used to verify the effectiveness and feasibility of the optimal evacuation plan in this research.

1 – 1 of 1